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Abstract

Background: Similarity search in protein databases is one of the most essential issues in computational proteomics.
With the growing number of experimentally solved protein structures, the focus shifted from sequences to struc-
tures. The area of structure similarity forms a big challenge since even no standard definition of optimal similarity
exists in the field.

Results: We propose a protein structure similarity measure called SProt. SProt concentrates on high-quality
modeling of local similarity in the process of feature extraction. SProt's features are based on spherical spatial
neighborhood of amino acids where similarity can be well defined. On top of the partial local similarities, global
measure assessing similarity to a pair of protein structures is built. Finally, indexing is applied making the process
by an order of magnitude faster.

Conclusions: The proposed method outperforms other methods in classification accuracy on SCOP superfamily
and fold level, while it is at least comparable to the best existing solutions in terms of precision-recall or quality

of alignment.

Background

The function of a protein is consequence of its spatial
conformation rather than of ordering of its amino
acids (protein sequence). Thus, the protein struc-
ture is closer to the function than the sequence,
therefore there was an enormous effort spent on pro-
tein structure research. Moreover, the biological mo-
tivation for protein structure similarity search stems
from the thesis that proteins having similar struc-
tures also share similar function. Hence, it is very
useful to have tools for measuring protein structure
similarity in order to be able to identify similar pro-
tein structures from a database of protein structures

with already known function.

Most of the protein structure similarity measures
are based on comparisons of positions of amino acids
in the space. For this purpose, amino acids are rep-
resented as coordinates of their a-carbon (and some-
times f-carbon) atoms. The protein structure simi-
larity assessment usually comprises two steps. In the
first one, which we call alignment search, an amino
acid inter-protein pairing is established. The second
step, which we call superposition search, includes su-
perposition optimizing the selected similarity func-
tion. This function usually aggregates values based
on spatial (euclidean) distances of the paired amino



acids after the superposition.

Although it has been shown that if the opti-
mal solution is required, the above defined mea-
suring of structure similarity is NP-hard [1] (non-
deterministic polynomial-time), each step of the
problem can be solved in polynomial time using the
result of the other step. If we know the alignment,
there exist methods how to obtain superposition op-
timizing given similarity formula in polynomial time,
e.g., the Kabsch algorithm [2] for root mean square
deviation (RMSD). On the other hand, if we are
provided with the superposition and the similarity
formula in a form of sum, we can use dynamic pro-
gramming to determine the respective optimal align-
ment with respect to the given superposition. The
dynamic programming has to employ a scoring cor-
responding to the inner part of the sum. If using
RMSD, the score of i-th and j-th amino acids of
the superposed proteins is defined as their squared
euclidean distance. As the solution of structure simi-
larity consists of steps that depend each on the other,
at the beginning we do not know neither the align-
ment nor the superposition.

We briefly describe the main ideas of some of the
state-of-the-art algorithms and also some solutions
which outperform the other ones and which we com-
pare to our contribution — DALI, ProtDez2, CE,
SSAP, MAMMOTH, Vorometric, Vorolign, PPM,
db-iTM, BLAST, PSI-BLAST, 3D-BLAST.

One of the first solutions to protein structure
similarity assessment was DALI representing the
protein’s structure by a two-dimensional matrix of
inter-residual distances [3,4]. Similar protein struc-
tures should also share similar distance distribution,
thus in the comparison process the matrices are split
into overlapping parts and similar (contact) patterns
are stored. These are further extended to obtain the
alignment.

Similarly to DALI, ProtDex2 uses intra-residual
distance matrices [5]. However, instead of chain-
ing the contact patterns, ProtDex2 splits them
to constant-sized submatrices which, together with
their description, are used as index terms for in-
verted index. Protein structures used as queries are
processed in the same way. The inverted index to-
gether with subsequent scoring is utilized to iden-
tify similar protein structures in the database. The
query result could be subsequently refined by an ar-
bitrary alignment-based algorithm.

The CFE method uses the concept of aligned frag-
ment pairs (AFP) for searching structurally similar

portions of the sequences [6]. In particular, a few
seeds are chosen and iteratively extended by chain-
ing with other AFPs. Three different measures are
taken into account when deciding whether a new
AFP should be added to the chain. At the end, a
final optimization is performed which results in the
best alignment.

The SSAP method [7] heavily exploits Smith-
Waterman dynamic programming algorithm [8].
Each residue is represented by distances to every
other residue. For each pair of amino acids in
the compared protein structures a dynamic pro-
gramming is used with scoring matrix based on the
residue distances (local similarity). In the second
level dynamic programming, the matrices are ag-
gregated to obtain the resulting structure alignment
(global similarity).

Another well-known method for comparison of
two protein structures is MAMMOTH [9]. MAM-
MOTH represents each amino acid by its sequence
neighborhood that is 7 amino acids long (heptapep-
tide). The unit-vector root mean square for each pair
of heptapeptides is computed and forwarded into
the Smith-Waterman algorithm as a scoring matrix.
The output of Smith-Waterman forms an alignment
of the two structures. Maximum subset of aligned
pairs being spatially close after superposition (based
on the alignment) is taken into account for comput-
ing so-called percentage of structural identity (PSI).
In the last step, probability of obtaining the given
PSI by chance (P-value) is calculated as the final
result.

More recently, methods based on Voronoi di-
agrams were proposed. The Vorometric method
forms contact strings from the Delaunay tessellation
and these are stored in a metric index [10]. For
finding similar contact string with the query, edit
distance with metric scoring matrix is used. The
resulting hits are used as seeds for the consequent
step, where a modification of dynamic programming
is applied to the hits in order to obtain the align-
ment.

Vorolign extracts nearest-neighbor sets for each
amino acid based on the Voronoi tessellation [11].
There is a similarity of the sets is defined, which
is further used in dynamic programming for assess-
ing local similarity to a pair of amino acids. The
local similarities are used as scores for second-level
dynamic programming.

The same group of authors introduced later a so-
lution called PPM [12]. PPM identifies sufficiently



similar (core) blocks which are then used to create
a graph of core blocks. That path in the graph is
chosen, that minimizes the cost of mutations.

The db-iTM method is a recently proposed solu-
tion which represents amino acids as a set of concen-
tric circles [13]. Based on their densities and radii,
the method forms feature vectors used in local dy-
namic programming.

Last of the structure-based methods presented in
this overview is 3D-BLAST [14]. This method de-
rives structural alphabet from the k-a plot. The
structures represented as strings over this alpha-
bet are accessed using the BLAST approach. That
takes us to other methods which are purely sequence-
based and thus we are able to provide comparison of
structure-based approaches with the sequence-based
ones — BLAST [15] and PSI-BLAST [16]. BLAST
is the state-of-the-art tool for similarity search in
protein sequence databases. It is based on heuris-
tics which noticeably decreases runtime needed for
the full Smith-Waterman algorithm [8], which is the
optimal measure for assessing similarity to a pair of
protein structures. PSI-BLAST extends the origi-
nal BLAST algorithm by employment of a position-
specific scoring matrix, so that it is more sensitive
to weak sequential similarities.

In this work, we propose our own approach to
protein structure similarity, called SProt, based on
high-quality modeling of local similarity in the pro-
cess of feature extraction. SProt’s features are rep-
resented by the spherical spatial neighborhoods of
amino acids, because on them the similarity can
be well-defined. Along with the proposed similarity
measure, we also introduce an access method that
reduces the number of applications of the measure.
The effectiveness and efficiency of the proposed ap-
proach is evaluated by experiments.

Methods

In contrast to most of the presented algorithms, in
our solution we put a lot of emphasis on high-quality
modeling of local similarities of the amino acids. We
believe that representing proteins by various derived
features might cause loss of information which is in-
evitable for quality alignment. In this section we
present our solution, called SProt, which aims to
avoid the possible loss-of-information drawback.

SProt fundamentals

As we have already mentioned, determining align-
ment and superposition of protein structures is a
nontrivial problem. However, what holds true for
whole protein structures does not have to be valid
for small substructures. If we want to align two
small parts of two protein backbones, the natural
way is to execute gapless alignment for these parts.
When aligning only a few amino acids, it does not
make sense to introduce gaps and thus the alignment
is defined unambiguously. We further employ this
alignment in a consequent step where we add those
amino acids to the alignment that are spatially close
to the already aligned backbone amino acids. These
do not have to be close in terms of sequence order.
In this way, we are able to take the spatial neighbor-
hood into account when modeling local similarity.
As stated above, given an alignment, the computa-
tion of the superposition is a relatively easy task.
The above outlined principle is the central point of
the local measure used in SProt.

Before we describe the details of the algorithm
in the following sections, we briefly present the main
ideas. SProt represents each amino acid A by amino
acids that are spatially close to A (section Repre-
sentation of a protein). To compute the local simi-
larity between such representations of amino acids,
an alignment and superposition are subsequently
performed (section Sphere similarity), as motivated
above. The computed local similarities are then
used by a dynamic programing method to obtain
the global structural alignment. The quality of this
alignment is expressed in terms of a TM-score value
(section Alignment and superposition). The overall
computation time can be decreased in the process of
querying the database for the most similar protein
structure. For this purpose we apply a database
method adopted from the field of metric indexing
(section Speedup by indexing).

Representation of a protein
Each amino acid A is represented by the amino acids
located within the euclidean sphere centered in A
and with given radius. Since the representation of
A is based on its spatial neighborhood bounded by
the sphere, we call the representation an aa-sphere.
SProt treats the position of each amino acid as
its a-carbon position. However, when testing inter-
section of an amino acid with a sphere, all heavy
atoms of the amino acid are considered, not only



the a-carbon. Such an approach allows us to include
amino acids into the aa-sphere whose a-carbons are
too far from the aa-sphere’s center but their side
chains are still close enough.

We divide the content of each aa-sphere into sev-
eral categories:

e Spherical backbone is the maximal continuous
part of the amino acid sequence that is in-
cluded in the aa-sphere and contains the cen-
tral amino acid. A spherical backbone is di-
vided into wupstream spherical backbone and
downstream spherical backbone. In the former
the amino acids precede the central amino acid
in the protein sequence, while in the latter the
amino acids follow the central amino acid.

e Upstream neighborhood contains amino acids
in the aa-sphere that precede the central amino
acid in protein sequence and are not included
in the spherical backbone.

e Downstream mneighborhood contains amino
acids in the aa-sphere that follow the central
amino acid in protein sequence and are not in-
cluded in the spherical backbone.

See Figure 1 for an example of an aa-sphere, includ-
ing the categories.

For the purposes of the following steps, the amino
acids in each category preserve the original protein
sequence ordering. We also define the term quan-
tity characteristics for each aa-sphere to denote the
number of amino acids belonging to a particular cat-
egory. The whole protein can then be modeled by a
sequence of aa-spheres built for every amino acid.

Sphere similarity

We measure similarity of aa-spheres using alignment
and superposition of their content, as this is simpler
for aa-spheres than for entire protein structures. As-
sessing the similarity to a pair of aa-spheres consists
of five steps, where the first three steps construct the
alignment and the last two valuate it:

1. Generating seed spherical backbone alignment.
Spherical backbones are aligned using gapless
alignment. The alignment is unique since it is
gapless and the central amino acids are aligned
to each other.

2. Computing spherical backbone superposition.

The alignment from the previous step deter-
mines the spherical superposition carried out
by the Kabsch algorithm, which is of linear
complexity [2].

. Generating spherical alignment. In the pre-

vious step, we have superposed the spheri-
cal backbones. However, to assess similarity
to the whole aa-spheres, we have to consider
also the other aa-sphere content. Therefore,
the obtained superposition is used to align the
rest of the amino acids in the aa-sphere (up-
stream and downstream neighborhoods). We
apply the Needleman-Wunsch algorithm [17]
(global alignment) separately on the upstream
and downstream neighborhoods. The algo-
rithm utilizes a scoring function in the form

1
1+ (d,.,-

o
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where d;; is the euclidean distance of i-th and
j-th amino acids according to the superposi-
tion of the aa-spheres, and d, represents a scale
parameter (empirically determined).

. Computing raw spherical measure (SM-raw).

The raw spherical measure for aa-spheres x
and y is computed for the whole spherical
alignment (steps 1, 2, 3) as:

1 LA

MaTig)y] = 14 <%)2,

(2)
where L 4 is the length of the alignment, d; is
the distance between i-th pair of amino acids
according to the spherical superposition, d is
the same scale parameter as in the previous
step, and max,, is a normalization factor
(the maximal value of the sum that can be ob-
tained for aa-spheres with the same quantity
characteristics as the aa-spheres x, y have).

SM-raw(z, y) = !

. Computing normalized spherical measure. An

SM-raw value that is expected to occur for
a pair of aa-spheres only by chance depends
highly on the quantity characteristics of the
compared aa-spheres. That is because better
superpositions are more probable for smaller
aa-spheres. Hence, there arises a problem



when comparing the similarities between pairs
of aa-spheres with different quantity charac-
teristics. Therefore, we compute the empirical
cumulative distribution functions (ECDF) for
SM-raw that are specific to quantity character-
istics of the compared aa-spheres x and y (de-
noted as ﬁ[w] v1)- The usage of ECDF allows us
to express the probability that a better result
could not be obtained by chance for aa-spheres
with identical quantity characteristics.

However, such a modification is not yet suf-
ficient. For example, if aa-sphere w is ob-
tained from aa-sphere z by removing some
amino acids, then SM-raw(w, z) will be maxi-
mum for given quantity characteristics. It im-
plies that ECDF of SM-raw(w, z) will be maxi-
mal as well, but that is not correct. Therefore,
we added the factor f that captures the dif-
ferences in the quantity characteristics of aa-
spheres x and y:

> min(q(z),q(y)) + 1

q€{qub,qav,qunqdn }

flz,y) =

(Svt)e{(QMb7(Iun)7(qdb7qdn)}
(3)
where qup, qdp, qun and g4, denote individual
quantity characteristics of an aa-sphere.

The full normalized measure of the aa-spheres
x and y is then

SM-score(z,y) = f(z, y)ﬁ[x] [v] (SM-raw(z, yz))
4

Alignment and superposition

To generate the global alignment of two protein
structures, the logarithm of SM-score is used as a
scoring function together with the linear gap penalty
model. The SM-score estimates the probability that
a matching of given pairs of spheres is significant.
Thus, the logarithm of SM-score used inside the
Needleman-Wunsch algorithm maximizes the prob-
ability that the resulting alignment is significant.

After obtaining the alignment, we employ the
widely used TM-score algorithm to get the super-
position and the final score [18]. The TM-score al-
gorithm was designed in order to maximize the fol-

2 max(s(x) + t(z), s(y) +t(y)) +1°

lowing formula:

La
1 1
TM-score = — —_—, (5)
i=11 + (7d0(LT))

where L 4 is length of the alignment, L is size of
the query structure, d; is distance between i-th pair
of amino acids according to the superposition com-
puted by the TM-score algorithm, and do(Lr) is a
scale function.

When speaking about similarity measure, we un-
derstand high scores as high similarities. However,
for some applications it is more convenient to treat
similarity as distance. Thus, similar structures ex-
hibit low distance. Since the TM-score is a similar-
ity measure that reaches 1 for identical structures,
it can be easily converted to a distance function as
d(z,y) = 1-TM-score(z, y).

Optimizations

The proposed SProt similarity measure depends on
the following parameters that must be tuned to ob-
tain high-quality results.

Sphere radius
This parameter determines the number of amino
acids in an aa-sphere. A small radius results in low
number of amino acids in an aa-sphere which leads to
decreased accuracy. On the other hand, using a large
radius increases the time needed to compute the aa-
sphere similarity. This is because a large aa-sphere
influences the runtime of the Needleman-Wunsch al-
gorithm (being of quadratic complexity).

In our experimental section, we used sphere ra-
dius 9 A as a trade-off between time and accuracy.

Scale parameter d

The SM-raw measure is a variant of TM-score that
uses scale parameter dependent on the size of the
compared proteins. However, TM-score’s parame-
terization is not suitable for aa-spheres, because they
are much smaller than the whole protein structures.
Therefore, we used constant-value scale parameter as
the ancestors of TM-score did. For example, Max-
Sub [19] used value 3.5 A, S-score [20] used value 5 A.
We decided to set the parameter to 2 A due to the
generally smaller sizes of aa-spheres in comparison
to the average protein size.



SM-raw empirical cumulative distribution functions
The empirical cumulative distribution functions
(ECDF) of SM-raw measure were produced from
the all-to-all comparisons of proteins taken from
ASTRAL-25 v1.65 database [21]. Since the ECDF
computation is highly space-consuming if every pos-
sible combination of quantity characteristics has to
be taken into account, a downsampling technique
was used to decrease the space complexity. The up-
stream and downstream neighborhood characteris-
tics were downsampled by a factor of 2, the back-
bones of sizes 0 and 1 were treated identically as
well as each quantity characteristics exceeding value
7.

Gap penalty

Setting a gap penalty value has the essential impact
on the quality of the measure. We used log(0.75)
as the gap penalty value which has the best results
for most of the evaluations. This setting of the gap
penalty is low enough, thus only amino acids with
significant similarity will be paired.

Speedup by indexing

The proposed SProt measure is computationally
very expensive. This poses a challenge especially
in the task of selecting the most similar structures
from a large structure database where many SProt
computations have to be performed. One of the pos-
sible solutions of this challenge is to employ indexing
methods.

Metric access methods

Most of the domain-specific applications of similar-
ity search employ pairwise similarity only as a step
within the process of database search. Typically,
we search for the most similar object in a database
to a given query. The most straightforward solu-
tion in such a scenario is to sequentially scan the
database, compare the query object to each object
in the database and identify the most similar object
(the nearest neighbor) or k most similar objects (k
nearest neighbors).

The metric access methods (or metric in-
dexes) [22] form a set of index structures allowing to
filter out database objects not similar to the query,
thus highly decreasing the runtime while maintain-
ing accuracy of the search. The goal is achieved by

resorting to metric distance functions, which is the
requirement of all metric access methods. Hence,
only the domains where the distance d between ob-
jects fulfills the metric axioms can benefit from the
metric access methods (without loss of accuracy).
The metric axioms are as follows (Vx,y, 2):

1. Non-negativity: d(z,y) = 0
2. Identity of indiscernibles: d(x,y) =0iff z =y
3. Symmetry: d(z,y) = d(y,x)
4. Triangle inequality: d(z,z) < d(z,y) + d(y, 2)

The axiom of triangle inequality is the most im-
portant for metric access methods. This axiom, in
conjunction with the other ones, allows to compute
a lower bound dr,5(g,0) of the distance d(gq,0) be-
tween a query object ¢ and a database object o
through another database object p (often called a
pivot). Specifically, the following equation follows
directly from the axioms:

dr(g,0) = |d(p,0) —d(p,q)| = d(g,0)  (6)

It is possible to compute multiple lower bounds
of the distance by using different pivots and select
the maximum lower bound being the closest one to
the distance. This can provide a good estimate of
the distance between ¢ and o. If the estimate is
large enough, object o can be filtered out, because
it surely cannot be close to the query and so cannot
be a part of the result set.

One of the metric access methods, representing
so-called pivot-based approach, is LAESA [23, 24]
(Linear Approximating and Eliminating Search Al-
gorithm), being suitable for time-expensive measures
because of its filtration abilities [25]. LAESA uses a
small part of the database as the set of pivots. The
pivots are used during the query process to estimate
distances between a query and all the database ob-
jects. Based on these estimates, it is possible to elim-
inate some of the database objects from the search,
so that the expensive distance computations between
the query and these objects are not needed to com-
pute. To compute the distance estimations as fast
as possible, all distances between the pivots and the
database objects are precomputed and stored in so-
called metric index.

To perform k nearest neighbor query, LAESA
maintains a set S containing not yet eliminated
objects that might be still included in the result.
The elimination process is based on estimations of



distances between the query and database objects.
Thus, LAESA also maintains the estimation of the
distance for the query and each database object o
(e(0)). These estimations are continuously updated
as more and more pivots are taken into account.
During the execution of the algorithm, the k nearest
neighbors from the set of already processed objects
are stored in a set R. At the end of the algorithm,
the set R contains the final result, i.e., the k nearest
neighbor objects.

The LAESA algorithm can be described as fol-
lows:

1. Initialization: At the beginning, all database
objects might be included in the result, there-
fore the set S contains all database objects.
Lower-bound estimations of distances between
the query and database objects are set to 0 and
the set R is empty.

2. The first pivot selection: An arbitrary pivot is
selected and denoted s.

3. The main loop: While s is defined:

(a) Distance computation: Remove s from
the set S and compute distance d(g, s).
Update the set R to contain k already
processed objects having the smallest dis-
tances to the query object q.

(b) Approximation: If s is a pivot, use it
to make the estimations more accurate.
That is, for each database object o, com-
pute a lower bound of its distance to the
query and set the related estimation e(o)
to the value of the lower bound if the
lower bound is greater than the original
value of the estimation.

(¢) Elimination: Use the greatest distance
between the query and an object from
R as a threshold and eliminate all ob-
jects o from S having e(o) greater than
the threshold. The distance between o
and query ¢ is never greater than the re-
lated estimation e(0), thus the eliminated
objects cannot be included in the result.
However, pivots contained in the set S
are explicitly protected against elimina-
tion during the first few steps. The num-
ber of such steps is a parameter of the
algorithm.

(d) The next object selection: If S contains
pivots, select a pivot p € S having the
smallest estimation e(p) and denote it as
s. Otherwise, select b € S having the
smallest estimation e(b) and denote it as
s. If S is empty, s becomes undefined and
so the algorithm terminates.

4. Result:
search.

The set R contains results of the

Capability of indexing

From the description of LAESA (step 3c) it fol-
lows that the speed-up is directly proportional to
the number of objects eliminated during the query
process. It has been shown [26] that the elimina-
tion ability (indexability) depends of the distribu-
tion of the distances between objects in the metric
space. If a distance exhibits low degree of index-
ability, it could be improved by applying a convex
function on top of the original distance, the so-called
similarity-preserving modifier [26]. The modifier vir-
tually makes the object clusters in the database more
tight, so that the indexability is increased. However,
the use of such a modifier may violate the triangle
inequality axiom to some extent. In particular, for
some triplets of the database objects x,y, z the tri-
angle inequality formula does not hold, which can
cause inaccuracies in the search. In such case the
search becomes only approximate. Therefore, the
modifier has to be chosen carefully since it repre-
sents the trade-off between accuracy and speed.

SProt access method

In contrast to what has been stated above, unfor-
tunately, SProt is not a metric distance, because it
does not satisfy symmetry and triangle inequality.
The absence of symmetry does not form a serious
problem — a small change in the lower bound for-
mula 6 can fix it:

drs(q,0) = max(d(p,0)—d(p,q),d(q,p)—d(o,p)) < d(q,0)

(7)

It is important to note that this formula requires

(due to asymmetry) to compute both of the dis-

tances d(q,p) and d(p, q). Both computations share

the same alignment, utilizing more than 90% of the

computation time. Hence, d(p,q) can be computed
relatively cheap when d(q, p) is already computed.



A more substantial problem is that SProt vio-
lates the triangle inequality, although the number
of the violating object triplets is small. However, it
is important to realize that even a relatively small
probability that a triplet violates the axiom can
lead to a high probability that an estimation pro-
duced by LAESA during the execution is overvalued

and so is incorrect. For example, suppose that
the probability that a triplet does not satisfy the
axiom is 107%. Then, if we used 1000 pivots
to estimate a distance, the probability that the
estimation is incorrect would be approximately
1—(1-107%)%09 ~ 9.5%. The reason is that the es-
timation of a distance is always set to the maximum
of lower bounds produced by different pivots. Thus,
if one of the lower bounds is overvalued, then the
estimation is overvalued as well, so that the estimate
becomes incorrect.

Therefore, it is desirable to adjust the method to
be more robust against incorrect estimations. To do
so, we introduced two enhancements:

1. An object t is eliminated during the LAESA
elimination step if the estimation e(t) of d(q,t)
is greater than a threshold 6

In such case the dis-
tance d(g,t) is not greater than 0. However, it
may not be true if the estimation is overvalued.
Hence, we introduced requirement that the es-
timation must be greater than 6 by more than
v percent to make the algorithm robust against
small overvaluation in the estimations. If the
estimations are not overvalued by more than
v percent, then the result of the algorithm is
equal to sequential scan. We call the v value
the approximation error tolerance factor.

2. The second improvement does not depend di-
rectly on the rate of overvaluation. Assume
that s is included in the result corresponding
to the sequential scan. Then, if the algorithm
processes s in the main loop, s has to be added
into the set R and will be never pushed away
by any other object. This is because there are
no more than k — 1 objects in the database
having smaller distances to the query than s
has. Thus, all incorrectness in the result can
be interpreted as a too early elimination of the
object (due to its overvalued estimation) be-
fore it could be processed.

Once all objects are eliminated, the main loop
is terminated. Hence, the second improvement
is intended to delay the termination of the
main loop and to process some of the elim-
inated objects. Originally, the main loop is
terminated after there is no object s to be se-
lected from S. Thus, we modify the step of
the next object selection. If the set S is empty,
the eliminated objects are taken into account
and an eliminated object b with the smallest
estimation e(b) is selected and denoted as s.
This type of selection can be performed up to
r times since the last change of the set R. In
other words, once the original stop condition
is true the stability of the set R must be addi-
tionally confirmed by r consecutive iterations
of the main loop during which R must not be
changed. We call the r value the order error
tolerance factor. This factor makes the method
more robust against some incorrectness caused
be wrong order of objects’ selection due to in-
correct estimations.

Proper settings of the introduced factors will pre-
vent from incorrect estimations. As we show later,
this prevention is so good that the use of modifiers
improving indexability is possible. However, it is
important to note that the searching is still approx-
imative.

Results

In this section, we evaluate SProt from two points of
view. First, we assess the quality of SProt in terms
of retrieval effectiveness. Second, we examine the
efficiency (speedup) of search using SProt.

Effectiveness

In order to evaluate the quality of the proposed mea-
sure, we focus on expressing how well the measure
fits the view of experts on protein structure similar-
ity. The difficulty of this task lies in the absence
of a large-scale expert-moderated database of pair-
wise protein structure similarities, which we could
use as a standard of truth. However, there exists the
expert-moderated hierarchical evolutionary classifi-
cation SCOP (structural classification of proteins)
that could be used for this purpose [27]. Using
SCOP, we are able to (indirectly) compare SProt
with domain expert’s conception of the structure



similarity. The SCOP hierarchy consists of four lev-
els — family, superfamily, fold and class. Proteins
in the same family have either high sequence sim-
ilarity (> 30%), or they have lower sequence sim-
ilarity (> 15%) but share very similar function or
structure. Proteins that share common evolutionary
origin (based on structural and functional features)
but have different sequence reside in the same su-
perfamily. Structures that share major secondary
structures in similar topological distribution are in
the same fold. And finally, similar folds are grouped
into classes.

Therefore, SCOP can provide us with the infor-
mation whether two protein structures are consid-
ered similar or not (at the given level) by a human
observer. Although such a binary measure (similar
or dissimilar) is not able to express detailed quali-
ties of the similarity measure, such as the quality of
alignment or superposition, it is suitable to express
performance of the measure in terms of ability of
classification and retrieval.

Protein classification

Automatic classification of protein structures is one
of the traditional problems. The task is to determine
SCOP classification of a query protein according to
the investigated measure. The category of the query
protein is derived from category of the database pro-
tein being most similar to the query. Accuracy of
classification is measured at a given level as the per-
centage of correctly classified queries.

We used the dataset that was first intro-
duced for evaluation of the Vorolign method
(Vorolign dataset). The dataset utilizes ASTRAL-
25 v1.65 [21] containing 4,357 structures. As the
query set, 979 structures from difference set between
SCOP v1.67 and v1.65 are used.

Results on this datasets are summarized in Ta-
ble 1. The table describes the classification accu-
racy for family, superfamily and fold levels. It also
shows average values of several characteristics de-
scribing the algorithms from different points of view.
Namely, the table contains average TM-score, aver-
age RMSD and average alignment cover (i.e., how
many percent of amino acids of a query is aligned)
between each query and its most similar structure
used for classification. On the superfamily and fold
level, SProt outperforms the other solutions, while
on the family level SProt is slightly outmatched by
Vorometric. It is interesting to realize that although

the other solutions stand out in terms of average val-
ues of the various characteristics, SProt outperforms
them in terms of classification accuracy. Thus, bet-
ter partial characteristics do not necessarily lead to
better real-world results.

Information retrieval in protein structure databases

In the previous section, we measured the hit rate
based on the most similar database structure. Thus,
the most similar structure was the only determinant
of the quality. However, often the user wants to ob-
tain all relevant structures not only the most similar
one. The result can then be visualized as a list of
database structures ordered according to the given
measure with the most similar structure on top. Cor-
rectness of such ordering can be measured in terms
of precision and recall [28]. Precision expresses how
many percent of structures at the given cut-off rank
in the result list are relevant. Recall expresses how
many of all relevant results are obtained at the given
cut-off rank in the result list. The precision-recall
dependence can be expressed in a graph that de-
scribes the average precision of queries for different
recall levels. As a single-value evaluation metric, it
is possible to use widely accepted mean average pre-
cision [28] [Overit, ze to tam fakt je.]. For a single
query, the average precision is defined as the average
of precision values that are computed for prefixes in
the result list, where each of the list prefixes ends by
a relevant structure. The mean of these values for all
queries then determines the mean average precision.

Another single-value evaluation metric is de-
scribed in the Vorometric paper [10] and called here
also average precision. To avoid a confusion we will
call it average precision for standard recall levels.
This evaluation metric is defined as the mean of aver-
age precision values for the 10 standard recall levels
(10%-100%).

For this experiment we used the ProtDez2
dataset consisting of 34,055 proteins that have been
first used for evaluation of the ProtDex2 method.
As the query set, 108 structures from medium-size
families of the dataset were selected.

We consider a selected database structure as rel-
evant if it comes from the same SCOP family as the
query. Precision-recall graph for the used dataset
is presented in Figure 2. The SProt has better
precision-recall curve than the other methods, ex-
cept Vorometric. In comparison with Vorometric,
the curve of SProt is slightly worse for medium re-



call levels while it is noticeably better for high levels.
When measuring the above defined single-value eval-
uation metrics, SProt outperforms the other meth-
ods as Table 2 demonstrates.

Quality of structural alignments

It would also be appropriate to investigate what is
the quality of alignments and scores the measure pro-
duces. For this purpose, 10 difficult pairs of struc-
tures were introduced in [29]. Tt is obvious from Ta-
ble 1, that SProt does not produce high alignment
cover and TM-score. However, to produce better
alignment and TM-score, it is possible to apply iter-
ative improvement of TM-score. In this case, the su-
perposition obtained by the original SProt is used to
produce a new better alignment. A similar approach
was utilized also by other methods, e.g., Vorometric.
For the purpose of the improvement, Needleman-
Wunsch algorithm is used with the scoring function

Sijz{

where d;; represents distance between i-th and j-th
amino acid according to the superposition, Ly is the
length of the query protein, and do(L7) is the scale
function used in TM-score. The 3do(Lr) thresh-
old is used to prevent aligning too distant amino
acids. The resulting alignment is then used in the
TM-score algorithm to obtain new score and super-
position. This procedure is repeated while the score
is being improved.

As shown in Table 3, this approach (denoted
SProt + TM-optimization) significantly improves
the cover and score. On the other hand, extensive
use of the iterative concept does not improve the
results of the previous evaluations whereas it notice-
ably downgrades performance of the algorithm.

1 .
a4 2 if dij < 3d(](LT)
1+(doch]T>)
—00

(8)

otherwise

Efficiency
To evaluate the indexing-based speedup possibilities,
we utilized the ProtDex2 dataset. This dataset is
large enough to show advantages of indexing. On
the other hand, it is still not so large to perform a
sequence scan in a reasonable time. Hence results of
sequence scan can be used for comparison.
Following settings were used. We select 1651
structured as pivots, one from each family of the
dataset. The value tolerance factor was set to 2.5%
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and order tolerance factor to 128. The number of
steps over which the pivots are protect against elimi-
nation was set to 518 of the total pivots count. These
settings provide sufficient robustness again overval-
ued estimations for the used dataset.

More important is the influence of the employed
modifiers that seamlessly balance between accuracy
and speed. The SProt measure ranges from 0 to 1
while most of the distances (approximately 95%) are
higher than 0.7. Therefore, we decided on the basis
of our experience to use a modifier that, loosely said,
smoothly expands the interval [0.7:1] at the expense
of the interval [0:0.7] which is condensed. One of
such modifiers is the RBQ(0.7,0.15)(w) modifier [26]
parametrized by a weight w. This modifier is defined
as the rational Bézier curve starting at point [0, O]
going toward point [0.7,0.15] and arriving to point
[1,1]. The weight w determines degree of deflection
of the curve toward the point [0.7,0.15]. Thus, the
weight w influence the ratio of the expansion and
condensation and thus it also influences indexibility.
The RBQo.7,0.15/(w) modifier for various weights w
is shown in the Figure 3.

As shown in Figure 4, computation time and the
number of protein structure pairs being compared
[nejde o pocet uziti miry!] increases with the decreas-
ing weight, and they also naturally increase with the
increasing number of the requested nearest neighbor.

It is also important to describe the precision
of such approximative searches. The precision of
k-nearest neighbor query of approximate search is
measured as the retrieval error between the query
result returned by our method (R(g)) and the accu-
rate query result obtained by sequence scan of the
database (Rseq(q)):

_ [Bseq(q) — Rlg)|
| Rseq(q)]

This error describes, how many percent of struc-
tures included in the sequential scan result are
missed in the result of the proposed access method.

As is shown in Figure 5A, the error naturally in-
creases with the increasing weight. Also with the
increasing number of the requested nearest neigh-
bor, the error increases. An exception is the error
for high weights and low numbers of the requested
nearest neighbor, where it also increases.

However, with the increasing number of the re-
quested nearest neighbor, this error becomes less sig-
nificant. The reason is that missing structures are of-
ten located in the back positions of the result where

E 9)



(as shown in the information retrieval experiment)
are located the lower portion of the structures that
are similar to the query according to meaning of do-
main experts. So we also introduce retrieval error
measure respect the SCOP category (family, super-
family or fold) data:

|(Rseq(q) N SL(q)) — R(q)]
|Rseq(q) N SL(Q)|

Ey,

otherwise

(10)
where R(q) is the result set obtained by the method
for query g and Rg.4(g) is the sequential scan result
set and S.(q) is a set of all structures having same
SCOP category at level L (at the family, superfam-
ily or fold level) with the query ¢. Thus, this error
describes, how many percent of relevant structures
included in the sequential scan result is missed in
the result of the method.

As it can be seen in Figure 5, these errors still
naturally increase with the increasing weight. Never-
theless, the errors respecting SCOP categories do not
negatively depend on the number of the requested
nearest neighbors and they are very small. Excep-
tions are still the errors for high weights and low
numbers of the requested nearest neighbors.

The conclusion is that, for the searching in Prot-
Dex2 dataset, the weight value of the modifier equal-
ing approximately 1 is reasonably fast and shows
low errors. However, appropriate setting the ac-
cess methods parameters may vary depending on
the used dataset (especially on its size and density
[Opravdu? Na ¢em to obecné nejcasteji zavisi?]).
However, it is important, that the above factors (ex-
cept from pivot selection) does not need to be know
during the database indexing and can be set up dur-
ing the querying. Thus, the user gets the opportu-
nity, if he is not satisfied with the obtained results
[David trochu pochybuje, zda ma moznost to poznat
- ja bych to neresil]; to change the settings (increase
the tolerance factors or decrease the weight of the
modifier) and run the query again using the same
index.

Conclusions

We proposed a novel algorithm that puts empha-
sis on high-quality modeling of local similarities of
the amino acids. That is achieved by represent-
ing each amino acid by its spatial-based amino acid
neighborhood. The approach leads to good real-
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world results, especially for superfamily/fold clas-
sification accuracy and for precision on high recall
levels where we outperform all existing [Ja bych tu
dal radéji compared.] solutions. The focus on the
quality of the modeling results in high computational
demands of the method which we solve be introduc-
ing modification of LAESA metric access method

if | Ryeq(q) N SL( qﬂlt;g he process which highly decreases the runtime

needed for scanning large datasets of protein struc-
tures. The speedup makes SProt competitive with
the best contemporary solutions not only concern-
ing the effectiveness but also the efficiency [Zddna
c¢isla ale neuvadime. Srovnavat se s casy uvedenymi
v jinych paperech piimo nelze - HW pokroéil.].
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Figures

Figure 1 - An example of an aa-sphere

This example demonstrates an aa-sphere for the 26-th amino acid of Ubiquitin [PDB:1UBQ)]. Each amino
acid is represented by a ball centered in its a-carbon position. The tube corresponds to the protein backbone
denoting the protein sequence. The Euclidean sphere with center in the 26-th amino acid (black) with radius
9 A (gray). The different colors emphasize amino acids included in the aa-sphere. Some heavy atoms of
the two violet amino acids located outside the Euclidean sphere intersect with the sphere and therefore are
included in the aa-sphere. The figure has been generated by VMD [30].

[ upstream backbone [ downstream backbone
[l upstream neighborhood [l downstream neighborhood
B central aminoacid [ non-sphere aminoacids

Figure 2 - Average precision-recall curves

The curves were computed for all 108 queries of the ProtDex2 dataset. The data for the compared methods
are borrowed from [10].
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Figure 3 - RBQ modifiers

RBQ(4,5)(w) modifier is defined as the rational Bézier curve starting at point [0, 0] going toward the control
point [a, ] ([0.7,0.15] in this case) and arriving to point [1,1]. Weight w determines the degree of deflection
of the curve toward the control point.
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Figure 4 - Access method efficiency

The efficiency of the SProt access method was measured for different weights of the modifier and for dif-
ferent numbers of requested nearest neighbors. All the 108 queries of the ProtDex2 dataset were utilized
and the average values are presented. The efficiency is expressed both in terms of the relative (according to
sequential scan) number of protein structure pairs being compared (A) and in terms of the relative (accord-
ing to sequential scan) computation time (B). (B) also includes the absolute time which was measured on
a machine containing an Intel Xeon E7540 2.00GHz processor. The sequential scan takes 39.4 minutes on
average. Vertical dashed lines denote minimal, average and maximal size of the query families in the dataset.
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Figure 5 - Retrieval error

The error rates of the SProt access method were measured for different weights of the modifier and for dif-
ferent numbers of requested nearest neighbors. The figure shows average values for all of the 108 queries of
the ProtDex2 dataset. The error rates describe the percentage of structures included in the sequential scan
result and missed in the result of the SProt access method. In the first case (A), a whole result of sequence
scan is considered. In the other cases, only subsets of the result sharing same family (B), superfamily (C)
or fold (D) with the query structure are taken into account. An error 0% means that none of the struc-
tures relevant to the query were missed, and conversely, an error 100% means that all relevant structures
were missed. Vertical dashed lines denotes minimal, average and maximal size of query families in the dataset.
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Tables

Table 1 - Classification accuracy
The evaluation of classification accuracy was performed on the Vorolign dataset for different levels of the
SCOP hierarchy (family, superfamily and fold). The table also describes average characteristics (RMSD,
alignment cover and TM-score) of the most similar structures to the query. The values of the db-iTM method
are taken from [13], and the values of the other compared methods are taken from [10].

Method Family Superfamily Fold

RMSD Cover

TM-score

SProt 90.4
Vorometric 90.7
PPM 88.3
db-iTM 86.6
Vorolign 86.4
CE 84.6
BLAST 48.9

96.9
94.9
94.5
95.8
92.4
91.9
52.5

98.6
97.6
97.5
98.2
97.7
94.1
52.8

4.14
2.43
NA
NA
1.90
1.95

81.1
87.2
NA
NA
76.3
78.2

0.63
0.74
NA
NA
0.74
0.77

Table 2 - Average precision

The experiments was performed against the ProtDex2 dataset and all 108 queries were utilized. The mean
average precision values of the compared methods are taken from [14], and the average precision for standard

recall levels values of the compared methods are taken from [10].

! based on returning top 100 hits

Method Mean average precision Average precision for standard recall levels
SProt 88.3 86.9
Vorometric NA 82.9!
CE 83.4 80.9
MAMMOTH 82.1 80.8
3D-BLAST 78.2 76.2
PSI-BLAST 69.8 61.8

Table 3 - Comparison of the alignment quality
The tests were performed on the special set of 10 difficult pairs of structures and average values of various
characteristics are presented. The values of the compared methods are taken from [10].

Method RMSD Cover TM-score
SProt + TM-optimization 3.29 85.8 0.65
SProt 7.29 73.8 0.43
Vorometric 3.02 84.8 0.65
Vorolign 2.28 51.7 0.56
DaliLite 2.82 80.0 0.61
SSAP 4.37 88.1 0.59
CE 3.17 83.4 0.60
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